Fabrication of Naphthol green B/layered double hydroxide nanosheets ultrathin film and its application in electrocatalysis

Xianggui Kong, Jingwen Zhao, Jingbin Han, Danyao Zhang, Min Wei*, Xue Duan
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

A R T I C L E I N F O

Article history:
Received 10 August 2010
Received in revised form 22 October 2010
Accepted 24 October 2010
Available online 4 November 2010

Keywords:
Layered double hydroxide nanosheets
Layer-by-layer self-assembly
Organic–inorganic ultrathin film
Enzyme-free sensor

A B S T R A C T

A facile enzyme-free hydrogen peroxide electrochemical sensor was fabricated based on multilayer ultra-thin film containing Naphthol green B anions (NGB) and exfoliated nanosheets of Co–Al layered double hydroxide (LDH) via layer-by-layer self-assembly technique. The X-ray diffraction pattern indicates the superlattice structure of the film with repeating distance of 4.15 nm; SEM and AFM images show that the film surface is continuous and uniform. The electrochemical behavior of the ultrathin film was studied by cyclic voltammetry and electrochemical impedance spectroscopy. The ultrathin film modified electrode shows a fast direct electron transfer for the Co2+/Co3+ redox couple with ΔE = 14 mV in 0.1 M NaOH solution. Furthermore, the modified electrode displays a significant electrocatalytic performance for H2O2 with Michaelis–Menten constant $K_{m} = 169.3$ μM. The anodic peak current increased linearly with the concentration of H2O2 from 8.0 × 10−6 to 1.8 × 10−4 M with a low detection limit of 9.0 × 10−7 M. The NGB/LDH ultrathin film was demonstrated as a feasible electrochemical sensor for detection of H2O2 with rapid response, high stability, good reproducibility and excellent selectivity.

1. Introduction

Recently, electrochemical sensors have become one of the most promising analytical tools in medical science, pharmacology research and environmental detection due to their simplicity, high sensitivity and excellent selectivity [1–4]. Significant improvements continue to be made in methodologies and fabrication since the invention of electrochemical sensor. Considerable research interests have been focused on the subject of how to modify the electrodes for the purpose of obtaining electrochemical sensors with high stability, sensitivity and specificity [5–7]. Various methods including electrochemical deposition, screen-printing technique, sol–gel technique and spin-coating approach, have been widely used and made great achievements in modifying electrodes [8–11]. More recently, the electrostatic layer-by-layer (LBL) self-assembly method has attracted much attention owing to the controllability of desirable thickness and architecture at a nanometer level. Some multilayer ultrathin films (UTFs) fabricated by LBL method have been extensively applied in electrochemical sensors [12–15]. Among them, the inorganic–organic UTFs have become the intense research target attributed to their high stability, good biocompatibility and eminent conductivity [16–19].

Layered double hydroxides (LDHs), well-known as an important class of inorganic layered material, can be represented by the general formula $\text{M}^{2+}_{x} \text{M}^{3+}_{1-x} \text{A}^{n+} \times n \text{H}_{2}\text{O}$, where M^{2+} and M^{3+} are divalent and trivalent metal ions respectively, and A^{n+} is an exchangeable anion compensating for the positive charge of the hydroxide layers [20–23]. In recent years, LDHs, especially containing transition metals, have become the potentially attractive materials for electrode surface modifications due to the charge transport, redox catalysts, anion exchange and biocompatible properties [24–27]. However, further application was largely restricted because many macromolecules (enzymes and other electroactive molecules) cannot be intercalated into the LDH gallery but only absorbed onto the surface of LDH particles, resulting in low loading, serious aggregation as well as desorption. In addition, the generally used drop-casting method for the modification of electrodes leads to poor adhesion of LDH particles to the substrate.

Recently, extensive efforts have been directed toward the delamination of LDH to obtain positively charged single nanosheets with ultimate 2D anisotropy [28–30]. One of the most important and attractive applications of such exfoliated nanosheets is that they serve as 2D building blocks to construct organic–inorganic ultrathin films with superior functionalities to individual component [31,32]. This therefore inspires us to fabricate the electrochemical sensor by alternate LBL assembly of positively charged LDH nanosheets and negatively charged electroactive species. The resulting ultrathin film would exhibit the following advantages: firstly, the molecular level of assembly will result in a

* Corresponding author. Tel.: +86 10 64412131; fax: +86 10 64425385.
E-mail addresses: weimin@mail.buct.edu.cn, weimin-hewei@163.com (M. Wei).

© 2010 Elsevier Ltd. All rights reserved.

0013-4686/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.electacta.2010.10.081
fast electron transfer between redox species and the underlying electrode owing to the high dispersion and uniform orientation of electroactive substance; secondly, the incorporation of LDH nanosheets can improve the adhesion of the ultrathin film to the electrode and thus facilitate the stability over a long period of usage.

In this work, a novel enzyme-free electrochemical sensor was fabricated based on UTFs composed of Co–Al LDH nanosheets and Naphthol green B (NGB, Fig. 1) via the electrostatic LBL assembly on the glass carbon electrode (GCE). Herein, Co–Al LDH nanosheets worked as building blocks as well as electroactive substance and NGB, which was often used as a mediator in electrocatalysis [33,34], served as negatively charged counterpart. The NGB/LDH UTF modulated electrode was characterized by cyclic voltammetry and its electrocatalytic behavior for the oxidation of H2O2 was thoroughly studied. We hope that the novel strategy in this work provides a feasible method for fabricating organic–inorganic UTFs with superior electrochemical properties, for the purpose of potential applications in electroanalysis and electrochemical sensors.

2. Experimental

2.1. Materials and reagents

Poly(styrene sulfonic acid) (PSS, MW = 70,000), Naphthol green B (NGB) and an aqueous solution (20%) of poly(diallyldimethylammonium chloride) (PDDA, MW = 100,000–200,000) were purchased from Alfa Aesar Chemical Co. Ltd. All other chemicals were of analytical grade and used without further purification. The Co–Al LDH nanosheets were prepared according to the reported method [28]. The detailed synthesis and characterization of Co–Al LDH and Co–Al LDH nanosheets were described in ESI (Figs. S1 and S2).

2.2. Fabrication of the multilayer UTFs

The Co–Al LDH nanosheets were prepared according to the reported method [28]. The detailed synthesis and characterization of Co–Al LDH and Co–Al LDH nanosheets were described in ESI (Figs. S1 and S2). The (NGB/LDH)n UTFs were fabricated by applying the LBL assembly technique. Prior to assembly, the GCE (3 mm, diameter) was polished successively with 1.0, 0.3, and 0.05 μm alumina powder, and sonicated in 1:1 nitric acid/water,absolute ethanol and Milli-Q water for 1 min respectively. The cleaned GCE was firstly dipped into a PDDA solution (PDDA:H2O = 1:20, v/v) for 20 min and then washed thoroughly and dried with a N2 flow. The fabrication of the (NGB/LDH)n multilayer films was carried out according to the following steps: the pretreated substrates were dipped alternately into the negatively charged NGB solution (1 mg mL−1) and the colloidal suspension of Co–Al LDH nanosheets (1 mg mL−1), for 10 min each time. After each assembly step, the substrates were thoroughly rinsed with deionized water and dried with a N2 flow. Subsequently, a series of deposition operations for NGB and LDH nanosheets were repeated n times to obtain (NGB/LDH)n UTFs (Fig. 1). The fabrication process of the (NGB/LDH)n UTFs that deposited on quartz glass is similar to that described above. Quartz glass (3.0 cm × 1.0 cm) substrates were cleaned by immersing in a fresh piranha solution (H2SO4:H2O2 (30%) = 3:1, v/v) (warning: piranha solution is very corrosive and must be treated with extreme care) for 30 min, followed by rinsing in deionized water and drying with a N2 flow.

2.3. Characterization and amperometric measurements

X-ray diffraction (XRD) patterns were recorded by a Rigaku XRD-6000 diffractometer, using Cu Kα radiation (λ = 0.15418 nm) at 40 kV, 30 mA. The UV–vis spectra were collected in a Shimadzu U-3000 spectrophotometer. The morphology of thin films was investigated using a scanning electron microscope (SEM Hitachi S-4700) with the accelerating voltage of 20 kV. The surface roughness was studied using the atomic force microscopy (AFM) software (Digital Instruments, Version 6.12).

The electrochemical measurements were performed using a CHI 660C electrochemical workstation (Shanghai Chenhua Instrument Co., China). A conventional three-electrode system was used, including a modified GCE as the working electrode, a platinum foil as the auxiliary electrode and a saturated Ag/AgCl electrode as the reference electrode. Electrochemical impedance spectroscopy (EIS) measurements were performed on (NGB/LDH)n modified electrodes in 0.1 M NaOH with 5 mM Fe(CN)63−−/4− solution at a potential of +0.22 V vs. Ag/AgCl. The EIS dispersions were recorded in the frequency range 0.01–100 kHz. The solutions were purged with highly purified nitrogen for 20 min prior to measurement. All measurements were performed at room temperature.

3. Results and discussion

3.1. Structural and morphological characterization of the (NGB/LDH)n UTFs

The multilayer film buildup process was monitored with a UV–vis spectrometer after each deposition of NGB as depicted in Fig. 2A. The strong absorption bands at 239 and 292 nm are due to the π−π* transition in the naphthoquinone structure of NGB. Compared with the pristine NGB in aqueous solution (Fig. 2A inset a, 235 and 283 nm), a little red-shift for the multilayer film can be attributed to interactions between individual molecules in the densely packed films. The intensities of the absorption bands at 239 and 292 nm correlate linearly with the bilayers number
Fig. 2. (A) UV–vis absorption spectra of the (NGB/LDH)$_n$ UTFs along with different bilayer number (n: 1, 3, 5, 7, 9, 10) on quartz glass substrates. The inset a shows the absorption spectrum of pristine NGB (10^{-5} mg mL$^{-1}$) and the inset b displays plots of the absorbance at 239 and 292 nm vs. n respectively; (B) XRD patterns for the (NGB/LDH)$_n$ UTFs deposited on quartz glass substrates.

(Fig. 2A inset b), indicating a stepwise and uniform film growth procedure. XRD patterns (Fig. 2B) of the multilayer films illustrate the evolution of a Bragg peak at $\theta = 2.1^\circ$ ($d_{001} = 4.1$ nm), which can be attributed to a so-called superlattice reflection of the organic–inorganic periodic nanostructure [30]. Furthermore, the reflection intensity increased progressively with the increase of bilayers number, further confirming the successful fabrication of the (NGB/LDH)$_n$ UTFs.

Further surface morphology and architecture of the (NGB/LDH)$_n$ UTFs were investigated by SEM and AFM. The top view of SEM images for the (NGB/LDH)$_n$ UTFs showed that both the homogeneity and surface coverage of the UTFs increased with the increase of bilayer number (Fig. 3A). AFM topographical images ($3 \mu m \times 3 \mu m$) of the (NGB/LDH)$_n$ UTFs are shown in Fig. 3B. The value of root-mean-square (rms) roughness for the UTFs increased slowly from 2.87 nm (5 bilayers) to 6.98 nm (20 bilayers), indicating relatively smooth surface of the UTFs. Moreover, a linear correlation between the film thickness and bilayer number was observed from their side view SEM images (Fig. S3), confirming that the UTFs possess a uniform and periodic layered structure. The thickness of one bilayer was calculated to be ~ 3.9 nm from the linear slope, in approximate agreement with the periodicity result obtained from XRD measurement (4.1 nm).

3.2. Direct electrochemistry of the UTFs modified electrode

Cyclic voltammograms (CVs) in 0.1 M NaOH solution of the bare electrode, the (NGB/PDDA)$_6$ UTF modified and the (NGB/LDH)$_6$ UTF modified electrode are displayed in Fig. 4A. No redox peaks were observed both for the bare electrode and the (NGB/PDDA)$_6$ UTF modified electrode (curve a and b respectively). However, the (NGB/LDH)$_6$ UTF modified electrode gives a couple of well-defined reversible redox peaks at 0.496 and 0.482 V respectively (curve c). These observations clearly demonstrate that this pair of peaks

Fig. 3. (A) Top view of SEM images for the (NGB/LDH)$_n$ UTFs (n: 5, 10, 20); (B) AFM images of the (NGB/LDH)$_n$ UTFs (n: 5, 10, 20).
Co(OH)$_2$–LDH belongs to the redox reaction of Co–Al LDH nanosheets. Moreover, a rather low ΔE_p (14 mV) was obtained for the (NGB/LDH)$_6$ modified electrode, and the ratio between the anodic and cathodic peak current was \sim1:2. Compared with the (NGB/LDH)$_6$ modified electrode, the (PSS/LDH)$_6$ modified electrode gave a couple of not well-resolved redox peaks at 0.536 and 0.434 V under the same conditions with $\Delta E_p = 92$ mV (Fig. S4), indicating that NGB serves as a kind of conductive substance facilitating charge transfer. Furthermore, the CVs of (NGB/LDH)$_n$ modified electrodes with different bilayer number are shown in Fig. 4B, from which the peak current (both anodic and cathodic) exhibits linear augment along with the deposition procedure. The results above confirm a successful LBL growth of the (NGB/LDH)$_n$ UTFs. In addition, Fig. S5 shows CVs of the (NGB/LDH)$_n$ modified electrode and (PSS/LDH)$_n$ modified electrode were calculated by the following equations:

$$E_{pa} = E'^{o} + 2.303 \left(\frac{RT}{nF} \right) \log v$$

(2)

$$E_{pc} = E'^{o} - 2.303 \left(\frac{RT}{nF} \right) \log v$$

(3)

$$\log k_s = \alpha \log(1 - \alpha) + (1 - \alpha) \log \alpha - \log \left(\frac{RT}{nFv} \right) - \frac{nF\Delta E_p\alpha(1 - \alpha)}{2.303RT}$$

(4)

where α is the charge transfer coefficient; k_s is the electron transfer rate constant; v is the scan rate; n is number of transferred electron; R is the gas constant; F is the Faraday constant; T is the absolute temperature; E'^{o} is the apparent formal potential. Based on the LSV results, the effect of scan rate on the electrochemical response of the modified electrode is displayed in Fig. 6A. The redox peak current increased linearly with the increase of the scan rate from 0.02 to 0.14 V s$^{-1}$, indicating that the redox reaction is a surface-controlled electrochemical process. Furthermore, according to the Laviron theory [39,40], the electron transfer coefficient (α) and the electron transfer rate constant (k_s) for the (NGB/LDH)$_n$ modified electrode and (PSS/LDH)$_n$ modified electrode were calculated by the following equations:

$$E_{pa} = E'^{o} + 2.303 \left(\frac{RT}{nF} \right) \log v$$

(2)

$$E_{pc} = E'^{o} - 2.303 \left(\frac{RT}{nF} \right) \log v$$

(3)

$$\log k_s = \alpha \log(1 - \alpha) + (1 - \alpha) \log \alpha - \log \left(\frac{RT}{nFv} \right) - \frac{nF\Delta E_p\alpha(1 - \alpha)}{2.303RT}$$

(4)

where α is the charge transfer coefficient; k_s is the electron transfer rate constant; v is the scan rate; n is number of transferred electron; R is the gas constant; F is the Faraday constant; T is the absolute temperature; E'^{o} is the apparent formal potential. Based

Electrochemical impedance spectroscopy (EIS) is an effective method for probing the features of surface-modified electrodes and has been successfully used to characterize the formation of multilayer films on different substrates [37,38]. The EIS consists of two sections: one is the linear part at lower frequencies representing the diffusion-limited process; the other one is a semicircle portion observed at higher frequencies corresponding to the electron-transfer-limited process. The Nyquist plots of the bare electrode and the (NGB/LDH)$_n$ UTF modified electrodes with different bilayers are shown in Fig. 5. The bare electrode exhibits a straight line, which is a characteristic of diffusion limited electrochemical process. In contrast, a semicircle part of the impedance spectrum can be observed for the (NGB/LDH)$_n$ UTF modified electrode and the diameters of the semicircle increased with the increase of bilayer number, indicating the augment of electron-transfer resistance along with the deposition procedure. The results above confirm a successful LBL growth of the (NGB/LDH)$_n$ UTF on the surface of GCE.

![Fig. 4.](image)

Fig. 4. (A) CVs of bare GCE, the (NGB/PDDA)$_n$ modified electrode and (NGB/LDH)$_n$ modified electrode in 0.1 M NaOH at a scan rate of 0.1 V s$^{-1}$; (B) CVs of the (NGB/LDH)$_n$ modified electrode with different bilayer number (n): 2, 4, 6 and 8 in 0.1 M NaOH at a scan rate of 0.1 V s$^{-1}$. The inset shows the plots of I_{pa} vs. n respectively.

![Fig. 5.](image)

Fig. 5. Nyquist plots of electrochemical impedance spectroscopy for bare GCE and the (NGB/LDH)$_n$ UTF modified GCE with different bilayer number (n): 1, 2, 3, 4, 5 and 6 in 5 mM Fe(CN)$_6^{3-}$ solution.
on the linear relationship between E_p and $\log v$ (Fig. S6) and Eq. (4), it was calculated that $\alpha = 0.48$ and $k_5 = 1.4 s^{-1}$ for the (NGB/LDH)$_n$ UTF modified electrode; $\alpha = 0.59$ and $k_5 = 0.9 s^{-1}$ for the (PSS/LDH)$_n$ UTF modified electrode. The results demonstrate that NGB accelerates the direct electron transfer between LDH nanosheets and the GCE than PSS. Moreover, the peak potentials of the (NGB/LDH)$_n$ UTF modified electrode were nearly independent on the scan rate in the range 0.02–0.14 V s$^{-1}$, also demonstrating the NGB accelerated the electron transfer between Co–Al LDH nanosheets and the GCE. Furthermore, the stability of the UTFs was evaluated by consecutive voltammetric sweep method. After 40 consecutive cycles scanning, the relative standard deviation (RSD) was 0.8% for the anodic current and 0.6% for the cathodic current (Fig. 6B), indicating excellent stability of the (NGB/LDH)$_6$ UTF modified electrode.

3.3. Electrocatalytic behavior of the (NGB/LDH)$_6$ UTF modified electrode for H$_2$O$_2$

The electrocatalytic behavior of the (NGB/LDH)$_n$ modified electrode towards the electrochemical oxidation of H$_2$O$_2$ was investigated by CVs. Fig. S7 shows the response current of different bilayers in the same concentration of H$_2$O$_2$, from which the maximum current response for H$_2$O$_2$ was obtained at the (NGB/LDH)$_6$ modified electrode. Therefore, the (NGB/LDH)$_6$ UTF modified electrode was chosen as the working electrode in this work.

Fig. 7A shows the CVs of the (NGB/LDH)$_6$ modified electrode in the absence and presence of H$_2$O$_2$. A remarkable increase in anodic peak current was observed after the addition of 0.1 mM H$_2$O$_2$, with a negative shift for the anodic peak from 0.496 V to 0.394 V. In contrast, no obvious current response was obtained for the bare electrode and the (NGB/PDDA)$_6$ modified electrode under the same conditions (Fig. 7B). The results elucidate that the (NGB/LDH)$_6$ UTF modified electrode exhibits excellent electrocatalytic activity to H$_2$O$_2$ and H$_2$O$_2$ participates and accelerates the redox reaction of Co–Al LDH on the surface of GCE. Based on the previous reports [25,27] and the results above, it is proposed that the electrochemical reaction process can be described as the following equations:

\[
\begin{align*}
\text{Co(OH)$_2$–LDH} + \text{OH}^- & \leftrightarrow \text{CoOOH–LDH} + \text{H}_2\text{O} + \text{e}^- \quad (1) \\
\text{CoOOH–LDH} + \text{H}_2\text{O}_2 + \text{OH}^- & \rightarrow \text{CoO}_2 + 2\text{H}_2\text{O} + 1/2\text{O}_2 + \text{e}^- \quad (5) \\
\text{CoO}_2 + \text{H}_2\text{O} + \text{e}^- & \rightarrow \text{CoOOH–LDH} + \text{OH}^- \quad (6)
\end{align*}
\]

The amperometric response of the (NGB/LDH)$_6$ modified electrode to H$_2$O$_2$ was examined by successively increasing the

![Fig. 6.](image1)

![Fig. 7.](image2)
In summary, organic–inorganic UTFs involving two different electroactive species, NGB and Co–Al LDH nanosheets, were successfully fabricated by LBL technique. The structural and surface morphology studies show that the ultrathin film is continuous and uniform, with long range stacking order resulted from a superlattice nanostructure. The (NGB/LDH)$_6$ UTF modified electrode demonstrates a couple of well-defined reversible redox peaks attributed to the electron transfer between Co–Al LDH nanosheets and GCE. Furthermore, the UTF modified electrode exhibits excellent electrocatalytic activity toward H$_2$O$_2$ with a linear response as the concentration of H$_2$O$_2$ ranges from 8 × 10$^{-6}$ to 1.8 × 10$^{-4}$ M. Furthermore, the long-term stability and the excellent anti-interference performance of the sensor indicate that the (NGB/LDH)$_6$ UTFs will be a promising material for electrochemical sensor application. Therefore, this work provides a facile strategy to fabricate enzyme-free H$_2$O$_2$ sensor based on organic–inorganic LBL.
self-assembly film. It is anticipated that the method in this work can be used for the design and fabrication of various nano-scale electronic devices or sensors.

Acknowledgments

This project was supported by the National Natural Science Foundation of China, the 111 Project (Grant No. B07004), the 973 Program (Grant No. 2009CB939802) and the Fundamental Research Funds for the Central Universities (Grant No. ZZ0908).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.electacta.2010.10.081.

References